Washable smart clothes might soon become the next big thing in wearable tech.
Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile.
The key for Purdue engineers was the development of a new spray/sewing method.
Smart Clothes Resistant to Stains
“By spray-coating smart clothes with highly hydrophobic molecules, we are able to render them repellent to water, oil, and mud,” said Ramses Martinez, an assistant professor in Purdue’s School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue’s College of Engineering. “These smart clothes are almost impossible to stain and can be used underwater and washed in conventional washing machines without damaging the electronic components sewn on their surface.”
This technology is published in the May 25 edition of Nano Energy. Martinez’s laboratory group has several videos about the technology on its dedicated YouTube channel:
- “Wireless non-contact voltage detection glove”
- “Powering OSC-based e-textiles underwater”
- “Wirelessly powered washable textiles”
Smart Clothes Remain Flexible
The rigidity of typical waterproof garments and their reduced breathability make them feel uncomfortable after being worn for a few hours. Thanks to the ultra-thin coating developed at Purdue, their smart clothes remain as flexible, stretchable, and breathable as conventional cotton T-shirts,” according to Martinez.
Unlike common wearables, the Purdue smart clothes do not require batteries for powering. By simply harvesting energy from Wi-Fi or radio waves in the environment, the clothes are capable of powering the circuitry sewn on the textile.
The Battery-Free Smart Gloves
One example is a battery-free glove that illuminates its fingertips every time the user is near a live cable to warn about the possibility of an electric shock. Another is a miniaturized cardiac monitoring system sewn on a washable sweatband capable of monitoring the health status of the wearer.
“Such wearable devices, powered by ubiquitous Wi-Fi signals, will make us not only think of clothing as just a garment that keeps us warm but also as wearable tools designed to help us in our daily life, monitor our health and protect us from accidents,” Martinez said.
Other Applications
Martinez says he envisions smart clothes transmitting information about the posture and motion of the wearer to mobile apps, allowing machines to understand human intent without the need of other interfaces, expanding the way we communicate, interact with devices, and play video games.
This technology can be fabricated in conventional, large-scale sewing facilities, which are expected to accelerate the development and commercialization of future smart clothes.
Martinez and his team have worked with the Purdue Research Foundation Office of Technology Commercialization to protect the intellectual property. The innovations are patent pending.